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The vibrational energy levels of the fullerene dimers C60O and C60O2 were calculated considering the local Hamiltonian of 
the Morse potential using algebra. Here, each bond of the molecules was replaced by a corresponding Lie algebra and 
finally the Hamiltonian was constructed considering the interacting Casimir and Majorana operators. The fundamental 
stretching modes of vibration of both dimers C60O and C60O2 were then calculated using the algebraic Hamiltonian. This 
study leads to explore few fundamental hitherto unknown vibrational energy levels of both the fullerene dimers. 
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1. Introduction 
 

Lie algebraic methods have been useful in the study of 

problems in Physics ever since Lie algebras were 

introduced by M. Sophus Lie (1842 – 1899) at the end of 

the 19
th

 century, especially after the development of 

Quantum Mechanics in the first part of the 20
th

 century. 

This is because quantum mechanics makes use of 

commutators [x, px] =   which are the defining 

ingredients of Lie algebras. The essence of the algebraic 

method can be traced to the Heisenberg formulation of 

quantum mechanics [1]. The use of Lie algebras as a tool 

to systematically investigate physical systems (the so 

called spectrum generating algebras) did not however 

develop fully until the 1970’s when it was introduced in a 

systematic fashion by F. Iachello and A. Arima in the 

study of spectra of atomic nuclei (interacting boson model) 

[2,3, 4, 5]. In 1981 F. Iachello introduced Lie algebraic 

methods in the systematic study of spectra of molecules 

(vibron model) [4]. This introduction was based on the 

second quantization of the Schrodinger equation with a 

three dimensional Morse potential and described rotation – 

vibration spectra of diatomic Molecules [5]. Soon 

afterwards the algebraic method was extended to rotation – 

vibration spectra of polyatomic molecules [6]. In the 

intervening years much work was done. Most notable 

advances were the extension to two coupled one-

dimensional oscillators [7] and its generalization to many 

coupled one-dimensional oscillators [8], which led to a 

simple treatment of vibrational modes in polyatomic 

molecules, and the extension to two dimensional 

oscillators [9] which allowed a simpler description of 

bending modes in linear molecules. The situation up to 

1995 was reviewed in reference [9]. After 1995, the brief 

review work of F. Iachello and S. Oss [9,10,11] reflects 

the scenario of the field up to 2002 along with the 

perspectives for the algebraic method in the  first decade 

of the 21
st
 century. 

Apart from the Lie algebraic method, already there are 

two other well known methods:  

1. Dunham Expansion and  

2. Potential Approach method.  

A simple analysis of molecular vibration spectra is 

provided by the Dunham expansion [10, 11, 12]. This is an 

expansion of the energy levels in terms of vibration 

quantum numbers. This expansion does not contain any 

information about the wave functions of individual states. 

Thus matrix elements of operators cannot be directly 

calculated.  

A second analysis is provided by the potential 

approach (differential / wave formulation). Here energy 

levels are obtained by solving the Schrodinger equation 

with an interatomic potential. The potential V is expanded 

in terms of interatomic variables. The solution of the 

Schrodinger equation also provides wave functions  (r) 

from which matrix elements of various operators can be 

calculated. In the potential approach (differential / wave 

formulation), all manipulations are either differentiations 

or integrations.    

The very recent approach to the analysis of molecular 

vibration spectra is based on algebraic (rather than 

differential) techniques. However, a similar approach has 

had in the description of vibrational spectra of nuclei [12]. 

The basic idea in this new approach is that of expanding 

the Hamiltonian (and other operators) in terms of a set of 

boson creation (and annihilation) operators characterizing 

the local /normal modes of the system. Contrary to the 

potential (differential/wave formulation) approach, all 

manipulations here are algebraic. 

The Lie algebraic formulation can be used to attack 

problems of relevance in Physics and Chemistry. In 

particular, in molecules it can be used to analyze rotational 

and vibrational spectra. For the treatment of electronic 

spectra, additional ingredients, describing the electron 

spin, are needed. An algebraic model of electronic spectra 

was introduced in 1989 [12, 13,14] but it has not been 
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exploited much up to this point. Instead the field in which 

the algebraic method has had most impact is that of 

vibrational spectroscopy. The reason is that the main 

advantages of the algebraic method are: the 

anharmonicities in the energy spectra are put in from the 

very beginning; anharmonicities in the interactions 

between different modes are introduced automatically 

since they are already contained in the matrix elements of 

the step operators; the method allows one to calculate 

wave functions and thus observables other than energies, 

such as intensities of transitions (infrared, Raman, Franck-

Condon).  

Since, anharmonicities play a crucial role in 

vibrational spectroscopy; it is here that algebraic methods 

have found their most useful application.  And hence, we 

have chosen the problem: “A study of the stretching 

vibrational spectra of fullerene dimers C60O and C60O2 by 

U(2) Lie algebra”. 

 

2. Review of Lie algebraic method    

 

First of all, the Lie algebraic set up required to study 

the vibrational spectra of molecules will be built up. Then  

the  Hamiltonian  for  the  specific  molecule  for  the  

specific  mode (local, normal, local  to  normal  transition) 

will  be  derived. In next step, eigenvalues will be derived 

related to the Hamiltonian. Using the eigenvalues, 

different  vibrational  energy  levels  will be calculated  as  

functions of vibrational quantum numbers. Final 

conclusion  will  be  drawn  after  comparing  these  results 

(calculated ) with  the  corresponding  experimental  ones. 

Vibrational parameters for molecules will also be worked 

out.  

Vibrational energy states of molecules are studied 

with a variety of experimental tools such as IR and Raman 

spectroscopy, Franck-Condon spectroscopy. Infrared and 

Raman spectroscopy provide informations on the 

vibrational  modes  built  on  the  ground  state electronic  

configuration; Franck-Condon spectroscopy provides 

information on the vibrational modes built on two 

electronic  manifolds.   

When dealing with molecules, an important aspect is 

what coordinate system is to be chosen. For small 

molecules the best set for vibrational analysis is provided  

by  the  internal  coordinates. If  N  is  the number  of  

atoms, the  number  of  internal  coordinates  is  3N-6. If 

the molecule is linear there are 3N-5 internal coordinates. 

The  algebraic  method  as  applied  to  the  vibrational  

spectroscopy of small  molecules consists in quantizing  

each  internal  degree  of  freedom  with  the  algebra of 

U(2) [U, unitary matrix]. For bending vibrations of linear  

molecules  the  motion  occurs  in  the plane  perpendicular  

to  the  axis  of  the  molecule, that  is  in two dimensions. 

These vibrations are therefore quantized  with  the algebra 

of U(3). The algebra of U(3) is composed of nine 

operators. For linear molecules one  thus  has  one U(2) for  

each  stretching vibration  and one U(3)  for  each bending 

vibration. The expansion of the  Hamiltonian  operator is 

done in terms of  the  four  operators of U(2)  and the nine 

operators of U(3). This scheme has been used recently to 

study bent and linear molecules. [15,16,17,18] In  bent  

triatomic  molecules (SO2, S2O)  there   are  three  one 

dimensional degrees of freedom, quantized  with  

U(2)xU(2)xU(2) while in linear triatomic molecules (CO2)  

there  are  two  one-dimensional stretching modes and one 

two-dimensional bending mode, U(2)xU(2)xU(3). 

Similarly, in linear four-atomic molecules (C2H2)[17, 18] 

one has U(2)xU(2)xU(2)xU(3)xU(3). By fitting the  

experimental  energy  levels it has been possible to  extract  

the  algebraic  parameters. These parameters play the role 

of the force-field constants in the usual harmonic analysis 

[18].  

In  our  work  we  shall  write  the  Hamiltonian  as  an 

(algebraic) operator  using  the  appropriate  Lie  algebra. 

This is unlike the more familiar differential operator of 

wave mechanics. It is important to note that the 

Hamiltonian will be presented by “matrix representation”. 

 

3. One dimensional algebraic model 
 

Even  though  the  Lie  algebras  were  introduced at 

the end of  the  nineteenth  century,  the  use  of  Lie  

algebras  as  a tool  to  systematically  investigate  physical 

systems (the so called spectrum generating  algebras) did 

not  however  develop fully until  the 1970’s. In 1970’s 

Lie algebras were introduced in a systematic fashion by A. 

Arima and F. Iachello in the study of spectra of atomic 

nuclei (interacting boson model) [16]. Wulfman  played  a  

great  role  in  the introduction  of  the  algebraic  approach  

to molecular  Spectroscopy [17, 18]. He  is  the  pioneer  to  

publish  the  first  paper  on  the  algebraic  approach to  

molecular  Spectroscopy (the  algebraic approach to the  

Morse oscillator) in 1979 [9, 17, 18]. Later, in 1981, F. 

Iachello used Lie algebraic methods in the systematic 

study of spectra of molecules (vibron model) [17, 18]. 

This use was based on the second quantization of the 

Schrodinger equation with a three dimensional Morse 

potential and described rotation-vibration spectra of 

diatomic molecules [17, 18]. Soon afterwards the algebraic 

method was extended to rotation vibration spectra of 

polyatomic molecules [17]. In the intervening years much 

work was done. Most notable advances were the extension 

to two  coupled one-dimensional oscillators [17] and its 

generalization to many coupled  one dimensional oscillator 

[18], which led to a simpler treatment of vibrational  

modes  in  polyatomic  molecules, and  the extension to 

two-dimensional  oscillators [17, 18] which allowed a 

simpler description of bending modes in linear  molecules. 

The situation up to 1995 was reviewed in the study of F. 

Iachello and R. D. Levine [8]. The study of F. Iachello and 

S. Oss [9] presented a brief review of the work done up to 

2000. The study of Iachello and Oss [9] also provided 

perspectives for the algebraic method in the first decade of 

the 21
st
 century.      

Recently, using Lie algebraic method [17, 18] 

reported better results for the vibrational energy levels of 

HCN, HCCF, SnBr4, CCl4 than those reported earlier. 

Moreover, The U(2) algebraic model model was 

particularly successful in explaining stretching vibrations 

of polyatomic molecules such as octahedral, benzene and 
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pyrrole-like molecules [12,13,14]. As such, the approach 

is particularly appropriate for many challenges of modern 

spectroscopy. Hence in this paper we used the algebraic 

model to study some of the vibrational spectra of fullerene 

dimers C60O and C60O2.  

The interpretation of experimental data by solving 

Schrödinger equation with interatomic potentials becomes 

increasingly difficult as the number of atoms in the 

molecule increases. Similarly, Dunham expansion contains 

large numbers of parameters which cannot be determined 

from the few available data. In this section, we use the 

U(2) algebraic model which is introduced as an alternative 

approach to the traditional Dunham expansion and 

Schrödinger equation for polyatomic molecules. 

According to Iachello and Levine [8] the algebraic 

theory of polyatomic molecules consists of the separate 

quantization of rotations and vibrations in terms of vector 

coordinates r1,r2,r3,…. quantized by the algebra 

 

      .222 321 UUUG          (1) 

 

For the stretching vibrations of polyatomic molecules 

corresponding to the quantization of anharmonic Morse 

oscillators, we have the classical Hamiltonian 

               h(p, x) =
2

2p
+D[1-exp(- x)]

2
                          (2)                                                                    

It can be put into one-to-one correspondence with the 

representation of the algebra U(2)  O(2) characterized 

by the quantum numbers mN ,  with the provision that 

one takes only the positive branch of m, i.e., m = N , N - 1, 

N – 2,….., 1 or 0 for N = odd or even (N = integer). 

However, to have complete description of molecular 

vibrations we need both stretching and bending modes. 

This is achieved by considering the isomorphism of U(2) 

Lie algebra with the solution of Schrödinger equation with 

another potential called Poschl-Teller potential. This 

potential is very much applicable for calculating bending 

vibrations where Morse potential is not appropriate. The 

eigenstates of Schrödinger equation with Hamiltonian 

operator is 

h(p, x) = 
2

2p
-

x

D

2cosh
                       (3)                                                           

It can also be put into one-to-one correspondence with the 

representation of U(2)  O(2), characterized by the 

quantum numbers mN ,  with the provision that one 

takes only the positive branch of m, i.e., m = N, N -1, N - 

2……, 1 or 0 for N = odd or even (N = integer). In the 

above equation, the coordinate x is the product of the 

radius of bender r times the bending angle  , i.e., x = r . 

For molecules like C60  and their oxides, we introduce U(2) 

Lie algebra to describe n stretching bonds (C-C). The two 

possible chains of molecular dynamical groups in these 

molecules are      

 

 U
1
(2) …  ­ U

n
(2)   O

1
(2) ….  O

n
(2)   O(2)

             (4)  

U
1
(2) ……  U

n
(2)   U(2)   O(2)       (5)   

 

which correspond to local and normal coupling 

respectively. The coupling to final O(2) group in the first 

chain is carried out though different intermediate 

couplings O
ij
(2) and the second chain arises from all the 

possible couplings of U
i
(2)groups to obtain a total U(2) 

group, which in turn contains the final O(2) group [11]. 

For these two situations the Hamiltonian operator can be 

diagonalized analytically. The common algebraic model 

Hamiltonian in the case of stretching for these molecules 

can be considered as [17, 18, 19]  

 

              
0

1

n n n

i i ij ij ij ij

i i j i j

H E AC A C M
  

                   (6) 

     

 

where Ci, Cij and Mij are the algebraic operators. In the 

local basis the operators Ci are diagonal matrix with 

eigenvalues 

                                        

 2
4,, iiiiiiii vvNvNCvN 

            (7) 

 
The couplings between the bonds are introduced by 

the operators Cij and Mij called Casimir and Majorana 

operators respectively. The Casimir operator has only the 

diagonal matrix element, where as the Majorana operators 

have both diagonal and non-diagonal matrix elements, 

which are given by 

                 

     2
4,;,,;, jijijijjiiijjjii vvNNvvvNvNCvNvN   

                    

jiijjijjiiijjjii vvNvNvvNvNMvNvN 2,;,,;, 
 

 

                   
    11,;,1,;1,  jjiiijjjiiijjjii vNvNvvvNvNMvNvN

                    
    11,;,1,;1,  iijjjijjiiijjjii vNvNvvvNvNMvNvN

(8) 

 
Thus the eigenvalues of the Hamiltonian can be easily 

evaluated which provide a description of n coupled 

anharmonic vibrators. 

 

 

4.  Results and discussion 
 

In this work we use four algebraic parameters 

. . , , , &i e A A N   , to study the vibrational spectra of 

the fullerene dimers C60O and C60O2  where N is the vibron 

number. 

The values of Vibron number (N) can be determined 

by the relation, 

2,e
i

e e

N
x




    ( 1,2.......i  )           (9) 

Where e and e ex are the spectroscopic constants of 

polyatomic molecules of stretching interaction of the 
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molecule considered [20, 21]. This numerical value must 

be seen as initial guess; depending on the specific 

molecular structure, one can expect changes in such an 

estimate, which, however, should not be larger than 

20% of the original value (Eq. (9)). It may be noted that 

during the calculation of the fundamental vibrational 

frequencies of fullerene dimers C60O and C60O2 the value 

of N is kept fixed and not used as free parameter. 

To obtain a starting guess for the parameter A we use 

the expression for the single-oscillator fundamental mode 

which is given as, 

 

( 1) 4 ( 1)E A N                     
(10) 

 

Using the relation (9), A  can be obtained as, 

 

4(1 )

E
A

N



          (11) 

 

To obtain an initial guess for the algebraic 

parameters whose role is to split the initially degenerate 

local modes is obtained by considering the relation,  

 

is 3 1

2

E E

N



                        (12) 

 

and for hyperfine splitting of the spectrum, the 

corresponding algebraic parameter 

 

2 1

6

E E

N



 

              (13) 
For fundamental stretching of the concerned 

molecules, the exact relationships are 

 

E1 = ε = −4A (N− 1) − 8A  (14) 

E2 = ε + 6 N            (15) 

      E3 = ε + 2λN.       (16) 

 

To have better results a numerical fitting procedure, it 

is required to obtain the parameters A,  , starting from 

the values as given by Eqs. (11, 12, 13). The Initial guess 

for A  may be taken as zero. 

The algebraic parameters used in the study of 

vibrational spectra of fullerene dimers C60O and C60O2  are 

given in Table 1 and the calculated vibrational energy 

levels (in cm
-1

) of both the dimers are shown in Table 2:  
  

Table 1. Algebraic parameters* of fullerene dimers  

C60O and C60O2   

 

Molecule Vibron 

number 

Stretching algebraic 

parameters 

 N A     

C60O 140 - 1.92 0.29 0.065 

C60O2 140 - 1.95 0.31 0.071 

*A,  ,   all are in cm-1 whereas N  is dimensionless. 

Table 2. Calculated energies (cm-1) of fullerene  

dimers C60O and C60O2 

 

Normal level Dimmer 

C60O 

Dimmer 

C60O2   

1  1067.5 1084.2 

2  1122.1 1143.8 

3  1148.7 1171.0 

4  1167.4 1185.7 

5  1176.5 1197.6 

6  1193.9 1205.2 

7  1199.7 1231.5 

8  1209.6 1256.9 

9  
1234.2 1275.4 

10
 

1245.8 1284.3 

11
 

1264.2 1301.7 

 

5. Conclusion 
 

The algebraic model presented here is a model of 

coupled one dimensional Morse oscillators describing the 

C-C stretching vibrations of the fullerene dimers C60O and 

C60O2. The hurdle of complicated integrations in the 

solution of coupled differential Schrödinger equations of 

polyatomic molecules can be avoided by making use of 

this algebraic model. For the C-C stretching inter-bond 

interactions, this model can be used in a simple and 

straightforward way and reliable calculation of the 

stretching bonds can be explained in terms of the above 

fitting parameters. Moreover, the number of parameters in 

this case is also much less as compared to the traditional 

Dunham expansion calculations. In this paper, we have 

presented only a few fundamental modes of vibrations of 

the fullerene dimers C60O and C60O2 which leads to 

explore few fundamental hitherto unknown vibrational 

energy levels of both the fullerene dimmers. It is hoped 

that with the further advancement of the U(2) model, the 

higher order modes can also be obtained. 
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